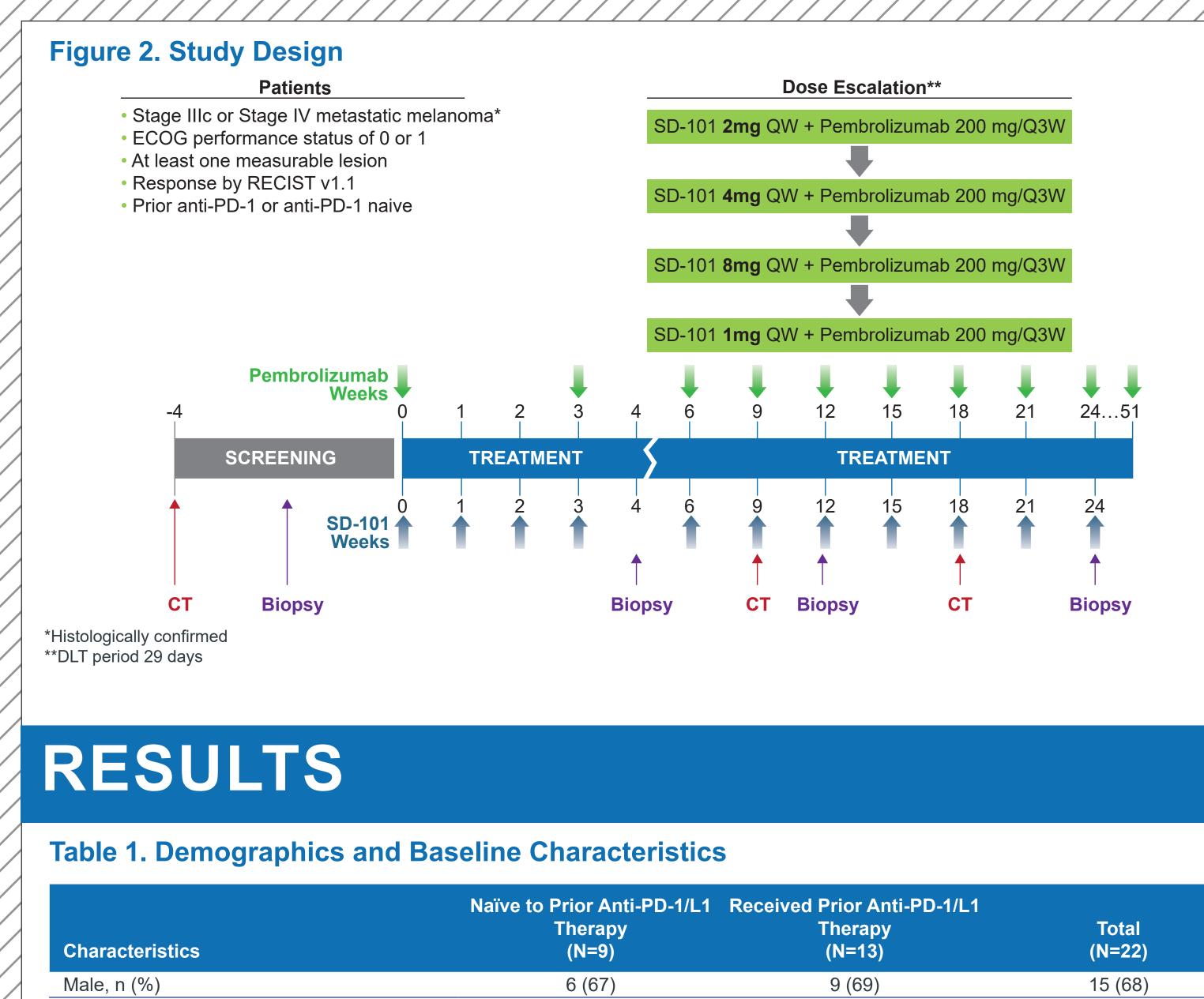
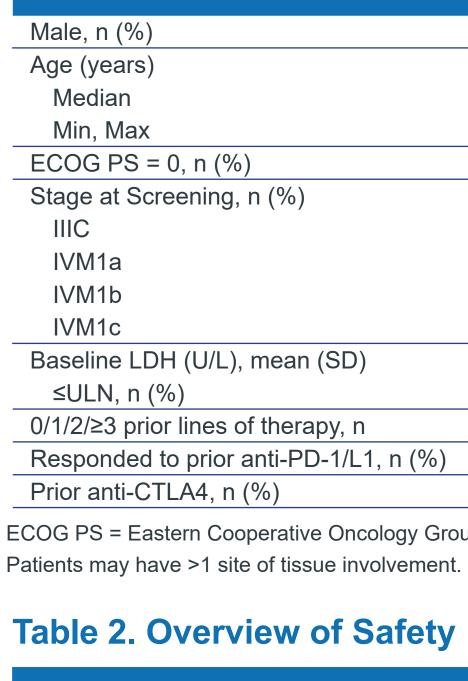

CT139 Durability of Responses to SD-101 in Combination With Pembrolizumab in Advanced Metastatic Melanoma: Results of a Phase 1b, Multicenter Study

Antoni Ribas,¹ Theresa Medina,² Shivaani Kummar,³ Asim Amin,⁴ Joseph J Drabick,⁵ Minal Barve,⁶ Gregory A Daniels,⁷ Deborah L Wong,¹ Emmett V Schmidt,⁸ Albert Candia,⁹ Robert L Coffman,⁹ Abraham CF Leung,⁹ Robert S Janssen⁹ ¹Department of Medicine, David Geffen School of Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ³Division of Oncology, Stanford University, Palo Alto, CA, USA; ¹Department of Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ³Division of Oncology, Stanford University, Palo Alto, CA, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ³Division of Oncology, Stanford University, Palo Alto, CA, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ³Division of Oncology, Stanford University, Palo Alto, CA, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁴Medicine at the University, Palo Alto, CA, USA; ⁴Medicine at the University of Colorado Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Center, Aurora, CO, USA; ⁴Medicine at the University of Colorado Center, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, CO, USA; ⁴Medicine at the University, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, CO, USA; ⁴Medicine at the University of Center, Aurora, Auror ⁴Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA; ⁵Division of Hematology-Oncology, Milton S. Hershey, PA, USA; ⁵Division of Hematology-Oncology, Milton S. Hershey, PA, USA; ⁵Division of Hematology-Oncology, Milton S. Hershey, PA, USA; ⁶Mary Crowley Cancer Research Center, Dallas, TX, USA; ⁷Department of Medicine, ¹ University of California, San Diego, San Diego, CA, USA; ⁸Merck & Co., Kenilworth, NJ, USA; ⁹Dynavax Technologies Corporation, Berkeley, CA, USA

BACKGROUND

- SD-101 is a synthetic Class-C CpG-oligodeoxynucleotide that stimulates plasmacytoid dendritic cells (pDCs) through engagement of Toll-like receptor 9 (TLR9). This stimulation causes pDCs to release interferon-alpha and mature into efficient antigen-presenting cells, strengthening both innate and acquired immune responses (Figure 1).¹
- Pembrolizumab is a PD-1 inhibitor that has been approved for treatment of unresectable or metastatic
- Preclinical studies in mice demonstrated that intratumoral injection of SD-101 in anti-PD-1 nonresponders led to a complete and durable rejection of injected tumors and a majority of uninjected, distant-site tumors.³
- In patients with low-grade non-Hodgkin's lymphoma, direct injection of SD-101 into tumors in combination with low dose radiation not only activated local immune responses, but also a systemic (abscopal) effect.⁴
- Previously, we presented the best overall response in evaluable melanoma patients⁵:
- Patients naïve to anti-PD-1 therapy: ORR = 100% (2 CR, 5 PR, 2 NE)
- Patients who previously received anti-PD-1 therapy: ORR = 17% (0 CR, 2 PR, 5 SD, 5 PD, 1 NE)


Figure 1. Both Innate and Adaptive Immune Responses Are Increased by Intratumoral Injection of SD-101. SD-101 engages TLR9 on plasmacytoid dendritic cells (pDCs) to secrete high levels of interferon-alpha, a potent immunomodulatory cytokine that is able to boost natural killer cell cytotoxic activity and induce recruitment of T cells to the tumor microenvironment. In addition, SD-101 induces DC maturation and the ability to cross-present tumor associated antigens, inducing CD8+ T cell responses.



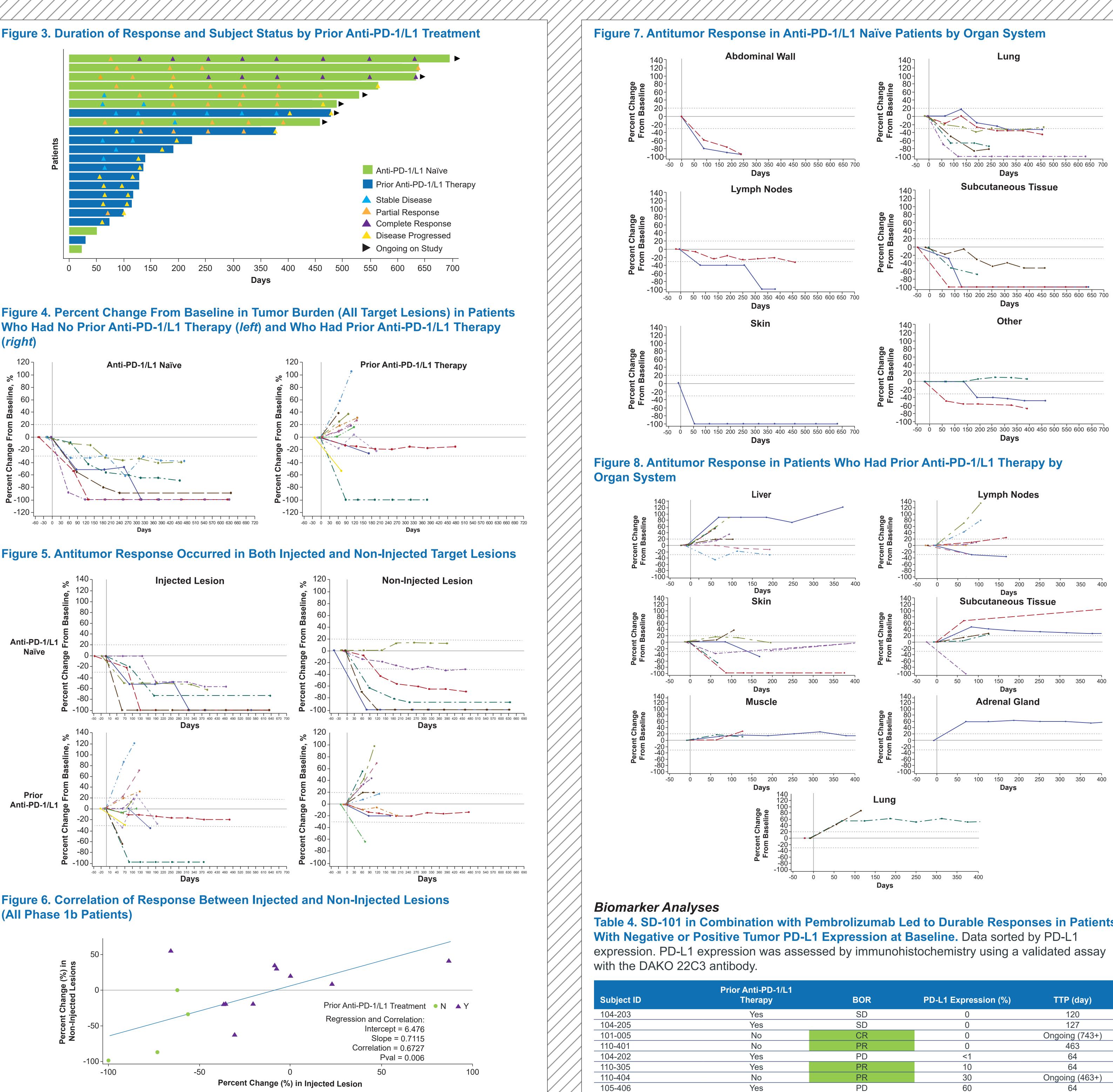
CTL= CD8+ T cell; DC = dendritic cell; IFN = interferon; NK = natural killer.

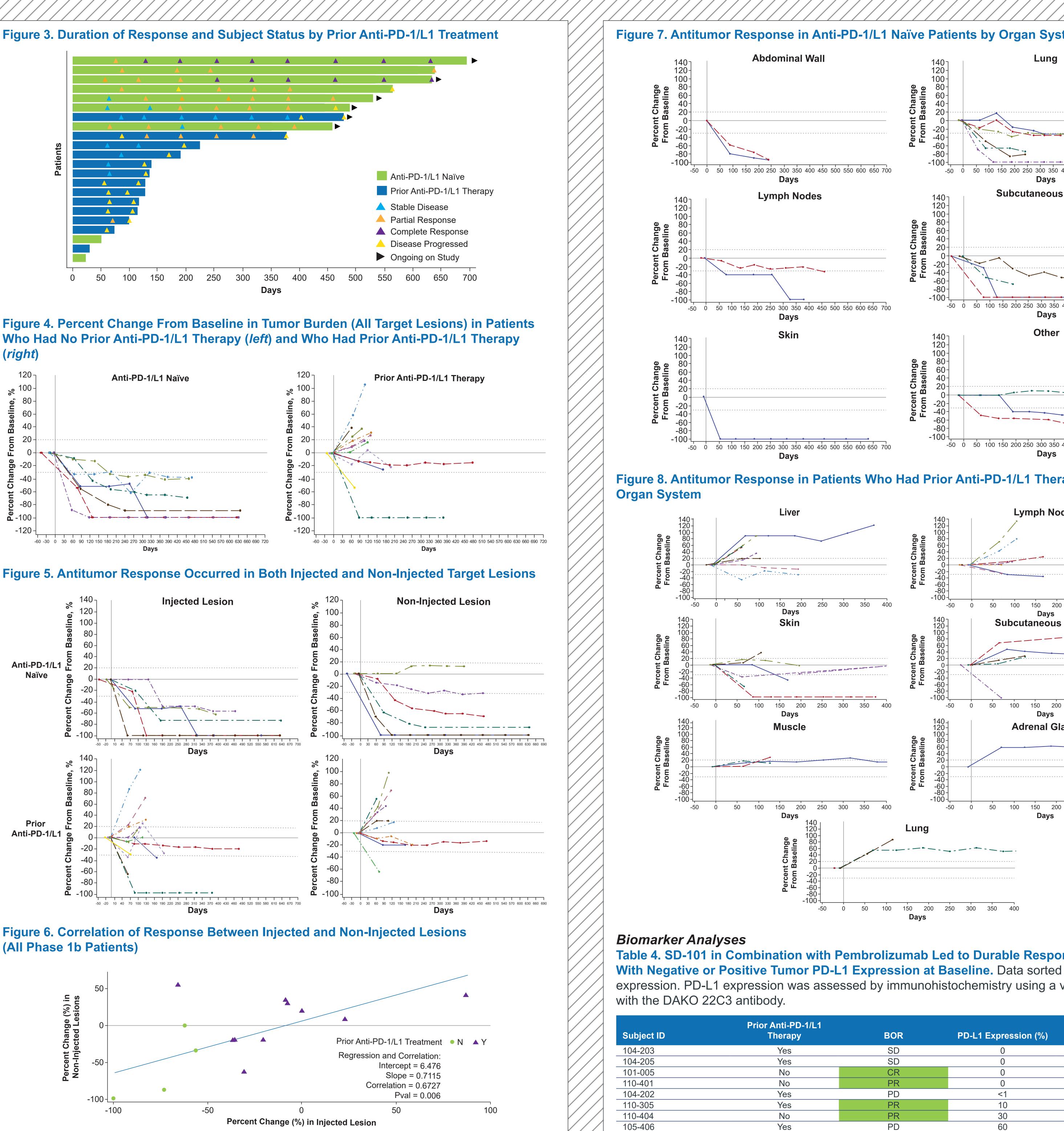
METHODS

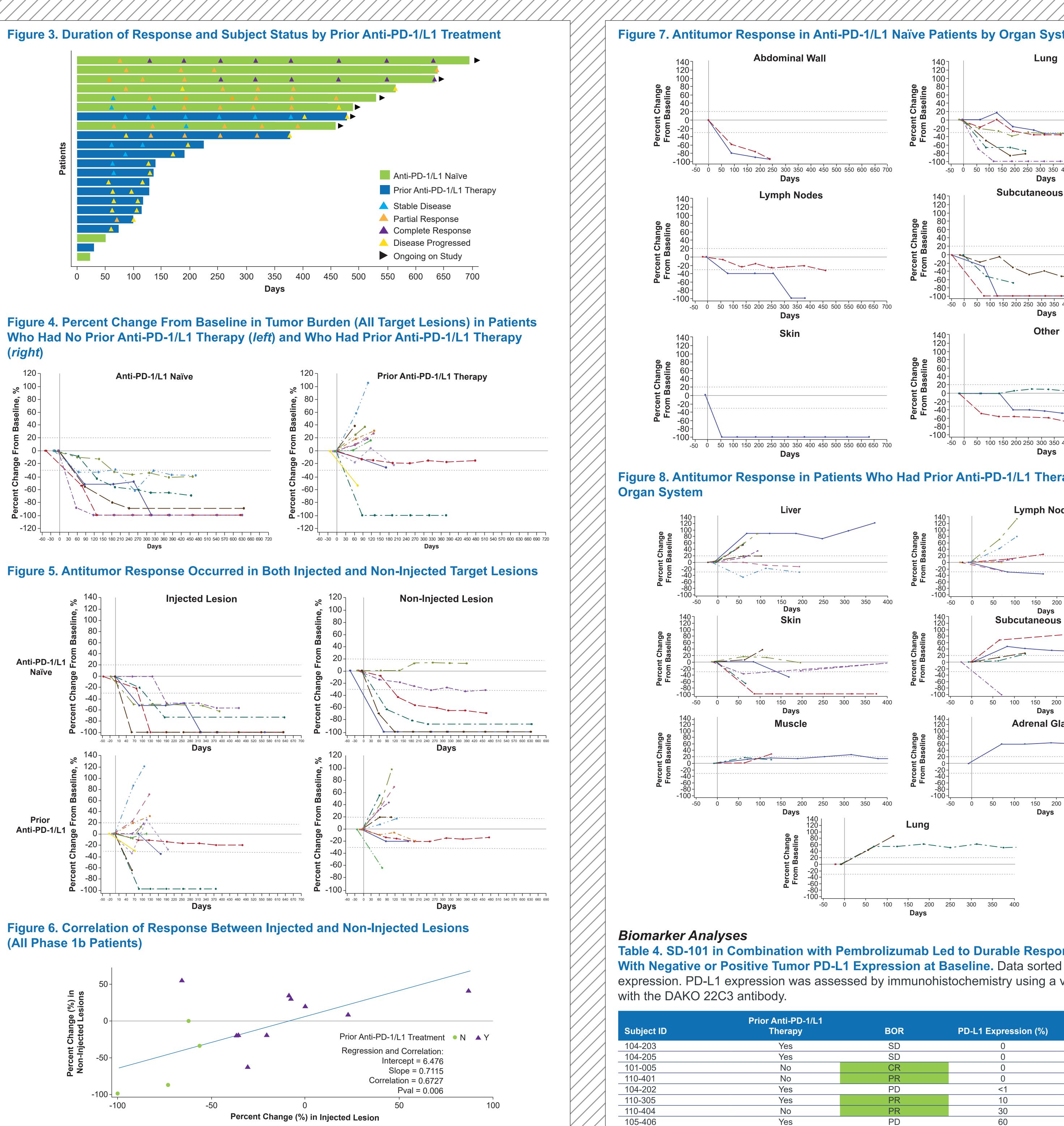
- This is an ongoing, phase 1b/2, open-label, multicenter, dose-escalation and dose expansion study (NCT02521870). Results from the Phase 1b portion of the study are presented here.
- Safety was assessed by adverse events, immune related adverse events, and serious adverse events
- Response was evaluated by the investigator according to RECIST v1.1.⁶ Assessments were based on radiographic images (either CT or MRI) at baseline, every 9 weeks until Day 379, and every 12 weeks thereafter until confirmed progression or initiation of new anti-cancer treatment.
- To assess pharmacodynamic effects, biopsies of the injected tumor were collected at screening (prior to dosing) and post-dosing on Days 29, 85 and 169 (data from Day 29 are presented here). Biopsies were analyzed by the nCounter[®] PanCancer Immune Profiling Panel (NanoString Technologies, Inc., Seattle WA) to evaluate the immunophenotype of the tumor environment. Nanostring data were analyzed using the nSolver™ Analysis Software.
- Baseline PD-L1 expression was measured by immunohistochemistry using the Dako 22C3 antibody in a validated assay.

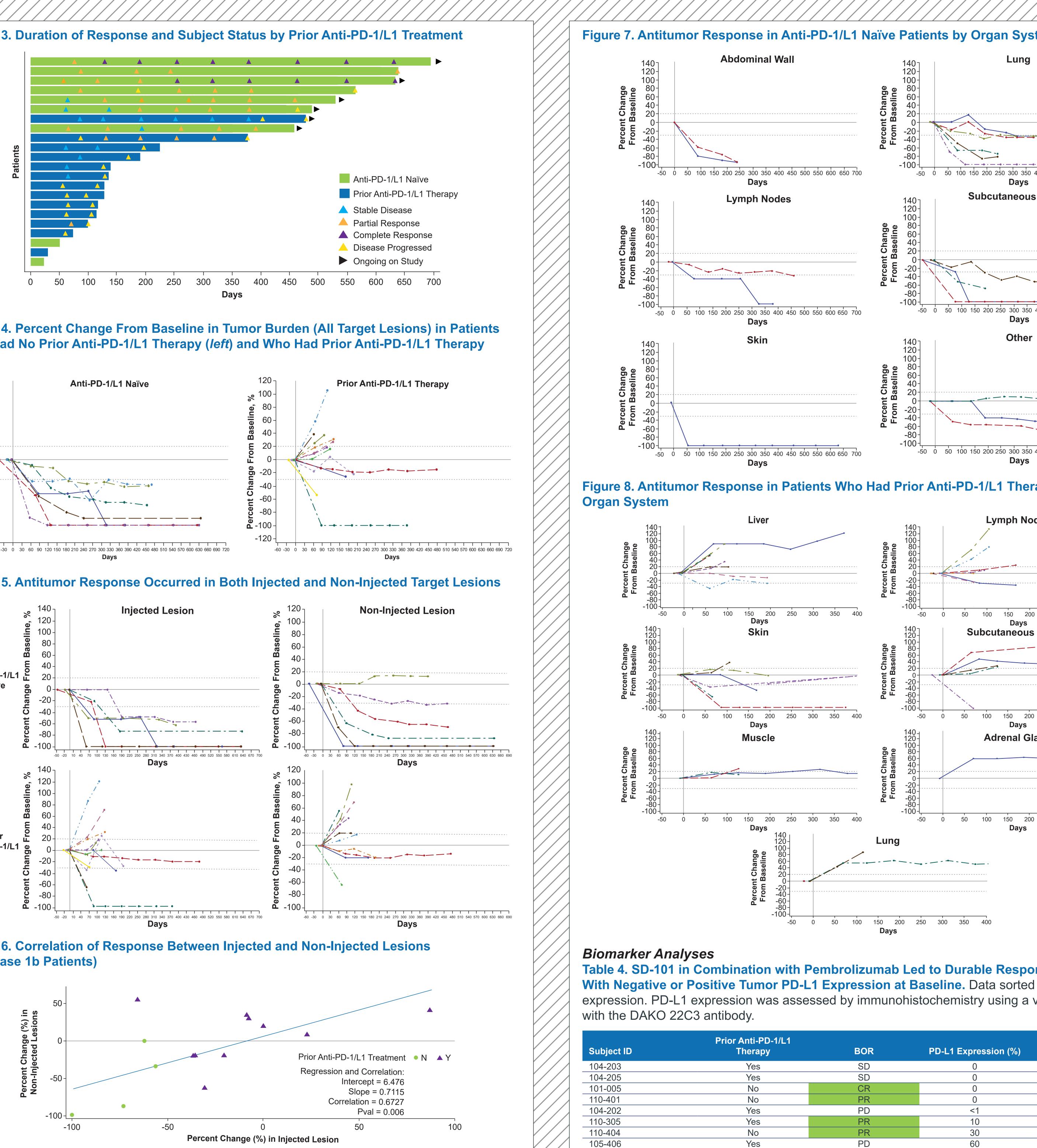
All TEAEs
Grade 3–4
irAEs
Treatment-related AEs
Grade 3–4
Chills
Myalgias
Injection-site pain
Fatigue
Headache
TEAEs leading to d/c of e
SAEs
Death
AE = adverse event; d/c = disc
Table 3. Efficacy
-

Event n (%)


	Naïve to Prior Anti-PD-1/L1 Therapy (N=9)	Received Prior Anti-PD-1/L1 Therapy (N=13)	Total (N=22)
	6 (67)	9 (69)	15 (68)
	67	64	64
	46, 78	34, 77	34, 78
	7 (78)	9 (69)	16 (73)
)			
	0	3 (23)	3 (14)
	4 (44)	0	4 (18)
	2 (22)	2 (23)	4 (18)
	3 (44)	8 (54)	11 (50)
n (SD)	397 (533)	292 (198)	335 (365)
-	8 (89)	8 (62)	16 (73)
rapy, n	4/4/1/0	0/1/4/8	4/5/5/8
PD-1/L1, n (%)	NA	3 (24)	NA
	4 (44)	12 (92)	16 (73)


ECOG PS = Eastern Cooperative Oncology Group performance status; NA = not applicable; SD = standard deviation; ULN = upper limit of normal.


	Total (N=22)	
	22 (100)	
	14 (64)	
	3 (14)	
	21 (96)	
	7 (32)	
	3 (14)	
	3 (14)	
	3 (14)	
	2 (9)	
	2 (9)	
either or both drugs	5 (23)	
	9 (41)	
	0	


continuation; irAE = immune-related adverse event; SAE = serious adverse event; TEAE = treatment-emergent adverse event.

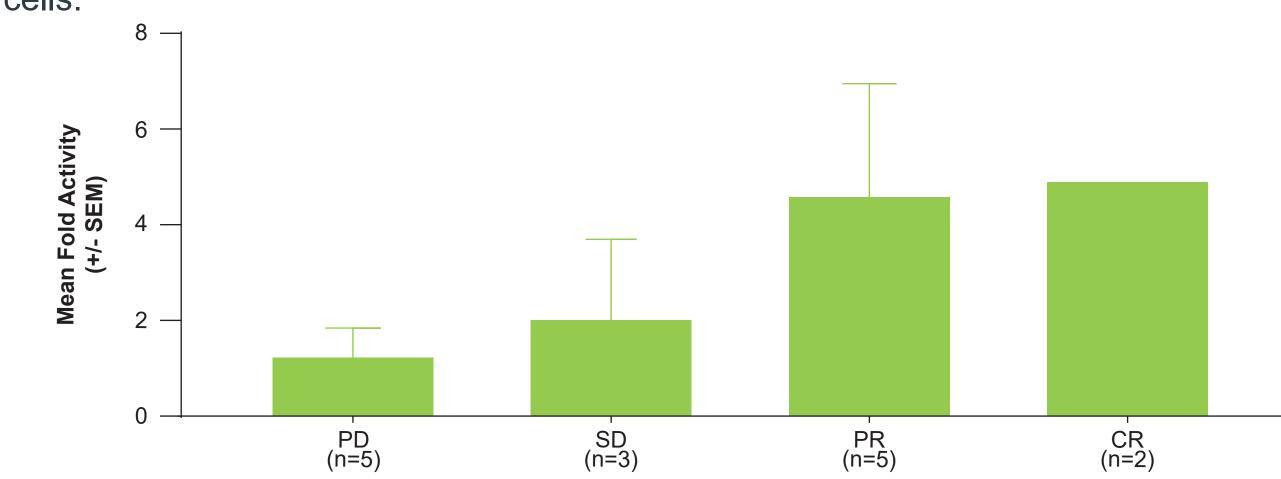
	Anti-PD-1 Naïve (N=9) % (n/N)	Anti-PD-1 Experienced (N=13) % (n/N)
DRR (ITT)	78% (7/9)	15% (2/13)
Median time to response (weeks)	18 weeks	14 weeks
(range)	(8–44 weeks)	(9–18 weeks)
Duration of response		
Median	NR	4 months
(range)		(2–6 months)
Ongoing responses at 18 months	86% (6/7)	0
Progression free survival		
Median	NR	2 months
12-month	88% (7/8)	8% (1/13)
Overall survival		
12-month	89% (8/9)	UNK

BOR=best overall response; TTP=time to disease progression

<u> </u>	
stem	
- •	
400 450 500 550 600 650 700	
400 450 500 550 600 650 700	
Tierre	
s Tissue	
•	
••	
400 450 500 550 600 650 700	

-																									
-	 	-	-	-	-		 -	-	-	-		-	-	-		 -	-	-	-		-	-	-	-	•
•																									

00	450	500	550	600	650


les		

250	300	350	400
Tissu	I e		
			•
250	300	350	400
and			

ses in Patients
by PD-L1
alidated assav

TTP (day)
120
127
Ongoing (743+)
463
64
64
Ongoing (463+)
64

Figure 9. Increased Post-Dose Immune Activity in the Tumor Microenvironment is Associated With a Better Clinical Response. A composite score of the fold change (Day 29/ screening) in relevant immune cell types binned according to best overall response. Cell types included NK cells, CD8 T cells, dendritic cells, CD45, T cells cytotoxic cells, Th1 cells and CD4 activated cells

Figure 10. Increased Immune Cellularity Is Associated With a Durable Clinical Response and Is Independent of Pre-Existing Immune Infiltration. Heat map of immune activity score sorted by post-dose activity, with time to disease progression (TTP). The immune activity score is a composite of relevant immune cell types including NK cells, CD8 T cells, DC, CD45, T cells, cytotoxic cells, Th1 cells and CD4 activated cells.

	Post	Pre	TTP (day)	BOR	Prior Anti-PD-1/L1 Therapy	Pt ID
150			64	PD	Yes	104-202
			120	SD	Yes	104-203
			64	PD	Yes	105-406
			127	SD	Yes	104-205
100			64	PD	Yes	102-303
100			64	PD	Yes	104-201
			67	PD	Yes	102-301
			Ongoing (788+)	PR	Νο	102-004
			Ongoing (652+)	CR	No	106-204
50			463	SD	Yes	101-403
50			Ongoing (743+)	CR	Νο	101-005
			358	PR	Yes	101-405
			463	PR	No	110-401
			85	PR	Yes	110-305
			Ongoing (484+)	PR	No	110-404

CONCLUSIONS

The combination of SD-101 and pembrolizumab is well tolerated.

- Most common adverse events related to SD-101 treatment were transient, mild to moderate flu-like symptoms (fatique, malaise, chills, headache and myalgia) and injection-site reactions that responded to over-the-counter medications.
- No increase in the frequency of immune-related adverse events over individual monotherapies reported in previous studies,^{7,8} nor was there evidence of a unique safety signal for the combination.
- Antitumor responses occurred in patients naïve to or who had received prior anti-PD-1/L1 therapy. Responses were durable in patients who were naive to anti-PD-1 therapy, with the 12-month PFS higher than with pembrolizumab monotherapy.⁷
- Responses were observed in the injected lesion and in distant lesions, including visceral metastases in the lung.
- Responses in the injected lesion correlated with responses in non-injected lesions. Patients with durable responses included those with negative or positive baseline PD-L1
- Clinical responses were supported by mechanistic data consistent with the anticipated activity of SD-101.² The combination induced immune stimulation in both patient groups.
- Increased immune activity was variable, but was generally associated with increased clinical response
- Increase in immune cell infiltrate was independent of baseline infiltration.
- These early data demonstrate that the combination of SD-101 and pembrolizumab was well tolerated. induced immune activation at the tumor site, and resulted in durable tumor responses. Combining an intratumoral TLR9 innate immune stimulant with PD-1 blockade can potentially increase clinical efficacy with minimal additional toxicity relative to PD-1 blockade alone.

REFERENCES

- . Guiducci et al. *J Exp Med*. 2006;203(8):1999-2008.
- 2. Merck & Company, Inc. KEYTRUDA (pembrolizumab). Prescribing
- information. 2016. Whitehouse Station, NJ. Wang S et al. PNAS 2016;113:E7240-E7249.
- Levv R et al. ASH 2016. Abstract 2974.
- 5. Leung ACF et al. ASCO 2017. Abstract 193149.
- 6. Eisenhauer EA et al. N Eur J Cancer 2009;45:228–47.
- 7. Robert C et al. *New Engl J Med* 2015;372:2521-2532. 8. Specenier P. *Expert Opin Biol Ther*. 2017;17(6):765-780.

This study was sponsored by Dynavax Technologies Corporation in collaboration with Merck & Co., Inc., Kenilworth, NJ USA. We thank the patients and their families and caregivers for participating in the study; the participating study teams including Sanjiv Agarwala and his team; Elliot Chartash for input into study design (Merck & Co., Inc.), and Biao Xing, Brit Harvey, and Tripta Dahiya for contributions to the analysis of the data (Dynavax Technologies Corporation).