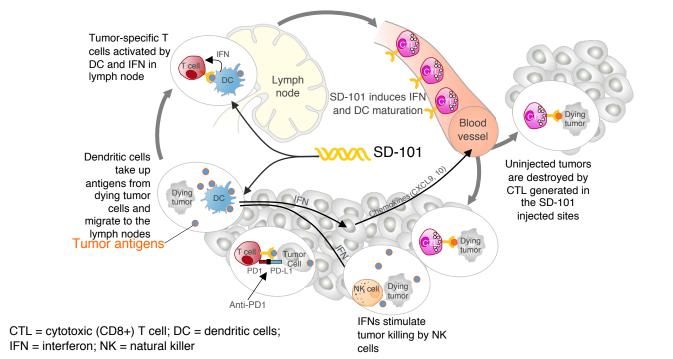
Abstract 9555: Phase 1b/2, Open Label, Multicenter, Study of the Combination of SD-101 and Pembrolizumab in Patients with Advanced/Metastatic Melanoma Resistant to Anti-PD-1/PD-L1 Therapy (SYNERGY-001/KEYNOTE-184, NCT02521870)


A. Amin¹, G.V. Long², M. Milhem³, C. J. Hoimes⁴, T. Medina⁵, R. M. Conry⁶, C. Lao⁷, G. Daniels⁸, S. Reddy⁹, R. H. I. Andtbacka¹⁰, M. Barve¹¹, M. Shaheen¹², T. Tüting¹³, M. Chisamore¹⁴, E. Schmidt¹⁴, B. Xing¹⁵, C. Guiducci¹⁵, C. Obiozor¹⁵, T. Bagulho¹⁵, E. Gamelin¹⁵, R. Janssen¹⁵, A. Ribas¹⁶

Levine Cancer Institute, Charlotte, NC, USA; ²University of Sydney, AU; ³University of Alabama School of Medicine, Birmingham, AL, USA; ⁴University of Sydney, AU; ³University of Sydney, AU; ³University of Alabama School of Medicine, Birmingham, AL, USA; ⁴University of Sydney, AU; ³University of Sydney, AU; ³University of Alabama School of Medicine, Birmingham, AL, USA; ⁴University of Sydney, AU; ³University of Sydney, AU; ³University of Sydney, AU; ⁴University of Sydney, AU; ⁴Un Lake City, UT, USA; ¹³University of California, San Diego Health System, La Jollas, TX, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona, Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁴University of Arizona, Cancer Research, Dallas, TX, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁵Dynavax, Berkeley, USA; ¹⁶Dynavax, Berkeley, USA; ¹⁶Dynavax, Berkeley, USA; ¹⁷Dynavax, Berkeley, USA; ¹⁷Dynav California, ¹⁶Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA

BACKGROUND

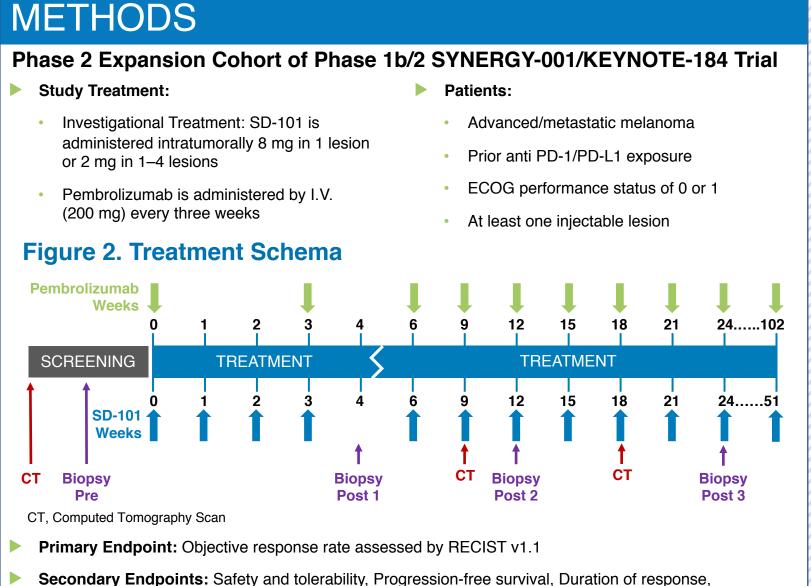
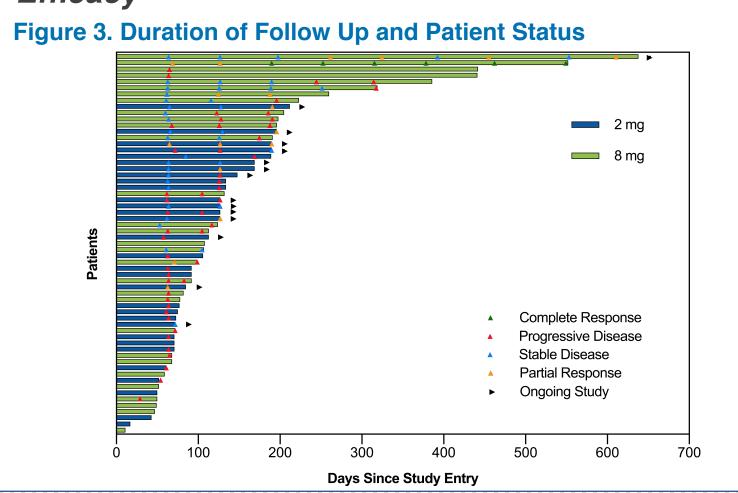

- PD-1 blockade has significantly improved outcomes in advanced melanoma, yet durable responses are elicited in less than half of the patients, therefore this remains an area of unmet need.¹
- KEYTRUDA[®] (pembrolizumab) is an anti-PD-1 monoclonal antibody (mAb) that is approved by the FDA to treat patients with unresectable or metastatic melanoma.1
- SD-101 is a synthetic class-C CpG-oligodeoxynucleotide agonist of toll-like receptor 9 (TLR9). SD-101 stimulates human plasmacytoid dendritic cells to release interferon-alpha and mature into efficient antigen-presenting cells, enhancing both innate and adaptive immune responses (Figure 1).²
- Preclinical studies of anti-PD-1 non-responder mouse tumor models demonstrated that intratumoral injection of SD-101, in combination with PD-1 blockade, suppressed the growth of tumors not only at the injected site, but also at distant un-injected sites.3
- In the phase 1b portion of this study, intratumoral injections of SD-101 in combination with pembrolizumab demonstrated clinical responses in both injected and distant lesions of patients with metastatic melanoma.⁴
- There remains a high unmet need for effective therapy in the previously treated, PD-1/PD-L1 inhibitor resistant/refractory metastatic melanoma population, here we report the results from a phase 2 expansion cohort of patients with advanced melanoma resistant/refractory (R/R) to anti-PD-1/PD-L1 therapy who were treated with the combination of SD-101 and pembrolizumab. Preliminary results from the phase 1b portion of this study were previously presented by Ribas et al at AACR 2018 (Abstract: CT139) and published in Cancer Discovery (2018).5,6

Figure 1. Both Innate and Adaptive Immune Responses Are **Increased by Intratumoral Injection of SD-101**

SD-101 induces PDCs to secrete high levels of interferon-alpha, a potent immunomodulatory cytokine that is able to boost NK cell cytotoxic activity and induce recruitment of T cells. In addition, SD-101 induces DC maturation cross-presentation of tumor associated antigens, inducing CD8+ T cell responses.

Immunophenotype of the tumor environment



RESULTS

Table 1. Baseline Patient and Disease Characteristics Characteristics 8 mg (N = 30)2 mg (N = 31)Median age, years (range) 67 (24, 90) 62.5 (33, 88) Sex, % Male / female 67.7 / 32.3 76.7/ 23.3 ECOG PS, % 0/1 61.3 / 38.7 53.3 / 46.7 BRAF V600E Mutation Status, n (%) 8 (25.8) 15 (50.0) Mutant Wild-type 21 (67.7) 14 (46.7) 2 (6.5) 1 (3.3) Unknown Stage at screening 5 (16.1) 9 (30.0) 26 (83.9) 21 (70.0) Metastatic Number of Target Lesions, n (%) 3 (10.0) 11 (35.5) 8 (26.7) 19 (63.3) 20 (64.5) ≥ 3 Organ Involvement, n (%) 10 (33.3) Liver 4 (12.9) Lung 11 (35.5) 7 (23.3) 3 (9.7) 3 (10.0) Bone 21 (70.0) Skin/subcutaneous tissue 22 (71.0) 15 (50.0) Lymph nodes 20 (64.5) 11 (35.5) 13 (43.3) Other organs 8 (25.8) 6 (20.0) Prior radiotherapy, n (%) 29 (93.5) 28 (93.3) Prior surgery, n (%) 13/9/9 10/8/12 $1/2/\ge 3$ prior lines of therapy, n 12 (40.0) Prior CTLA-4 therapy 13 (41.9) ECOG PS = Eastern Cooperative Oncology Group performance status; Safety **Table 2. Safety Summary** Event, n (%) Subjects with at least one Treatme

Related AE Subjects with Grade 3 & 4 Treatmen elated AE mmune Related AEs All grades* Hyperthyroidism *Hypothyroidism, pneumonitis, myositis, hepatitis and colitis were not seen in 2 or 8 mg groups

Efficacy

	2 mg (N = 31)	8 mg (N = 30)
i–	26 (83.9)	26 (86.7)
t	5 (16.1)	7 (23.3)
	0	1 (3.3)
	0	1 (3.3)

Table 3. Best Overall Response for ITT Population by						
Best Overall Response Rate (ITT)	2 mg (N = 31)	8 mg				
Objective response rate, n (%) (95% CI)	6 (19.4) (7.5, 37.5)	4 (13.3				
Best overall response, n (%)						
Complete response	0	1				
Partial response	6 (19.4)	3				
Stable disease	9 (29.0)	9				
Progressive disease	12 (38.7)	10				
Not evaluable*	4 (12.9)	7				
Time to response (months)						
Median	4.2					
Min, Max	(2.1, 6.4)	(2				
Duration of response						
Median	0.03 (not mature)					
Min, Max	(0.03, 4.1)	(0.9				
Duration of follow up						
Median	3.5					
Min, Max	(0.6, 7.0)	(0.				

Best Overall Response Rate (ITT	BRAF Mutant (N = 22)	BRAF Wild Type (N = 36)	В
Desi Overall Response Rate (111) (11 - 22)	(N = 50)	
ORR, n (%)	3 (13.6)	6 (16.7)	
(95% CI)	(2.9, 34.9)	(6.4, 32.8)	
BOR, n (%)			
CR	0	1 (2.8)	
PR	3 (13.6)	5 (13.9)	
SD	6 (27.3)	10 (27.8)	
PD	10 (45.5)	12 (33.3)	
NE	3 (13.6)	8 (22.2)	
	Deat averall researches OD		

