Consistent pharmacodynamics and immunological responses to the TLR9 agonist, SD-101, following intratumoral injection in multiple cancer types

Albert Candia¹, Cristiana Guiducci¹, Ezra Cohen², Ronald Levy³, Mohammed Milhem⁴, Antoni Ribas⁵, Thomas Tüting⁶, Erick Gamelin¹, Robert S. Janssen¹, Robert L. Coffman¹

¹Dynavax Technologies, Berkeley, CA; ²Moores Cancer Center, San Diego, CA; ³Stanford University School of Medicine, Stanford, CA; ⁴University of Iowa Health Care, Iowa City, IA; ⁵Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA; ⁶University Hospital Magdeburg, Magdeburg, Germany

> Table 1. Clinical Responses to the Combination of SD-101 and Pembrolizumab
> **Occur in Both PD-L1 Positive and Negative Tumors**

Melanoma								_	Head and Neck					
Anti-PD-1/L1 Naïve Prior anti-PD-1/L1 Therapy Anti-PD-1/L1 N							aïve							
	2 mg			8 mg –		•							8 mg –	
Subject	BOR	TPS	Subject	BOR	TPS		Subject	Dose	BOR	TPS		Subject	BOR	TPS
1	CR	0	35	PR	0		63	8	PR	0		1	PD	0
2	CR	0	36	PR	0		64	4	SD	0		2	PD	0
3	CR	0	37	PR	0		65	4	SD	0		3	PR	<1
4	CR	0	38	SD	0		66	8	SD	0		4	SD	2
5	PR	0	39	SD	0		67	1	SD	0		5	PD	5
6	PR	0	40	SD	0		68	8	SD	0		6	PD	10
7	PR	0	41	SD	0		69	4	PD	0		7	PD	10
8	PR	0	42	irAE	0		70	8	PD	0		8	PD	15
9	PR	0	43	PD	0		71	8	PD	0		9	PR	30
10	PR	0	44	PD	0		72	8	PD	0		10	PR	40
11	PR	0	45	DC	0		73	8	PR	<1		11	PD	60
12	SD	0	46	DC	0		74	8	SD	<1		12	PR	90
13	PD	0	47	PR	<1		75	4	PD	<1		13	PD	95
14	DC	0	48	PD	<1		76	8	cIPD	<1				
15	PR	<1	49	PD	<1		77	8	SD	1				
16		1	50	PD	1		78	8	SD	1				
17		1	51	PR	2		79	8	PD	1				
10		1	52	SD	3		80	8	PD	1				
20		1	53		5		81	8		3				
20		2	54		10		82	8		10				
21	SD	3	55		20		83	8		10				
22	PR	5	50		25		84 95	0		60				
23	SD	5	50		30		60	0	PD	90				
25	PD	5	50		30									
26	PR	10	60	SD	80									
27	PR	30	61	CR	90									
28	PR	30	62	PR	90									
29	PR	35	02		00									
30	PR	45												
31	PR	50												
32	DC	75		BOR -	hest ove	ادر	Il response	CR – comr	nlata rasno	DASA PR -	- nar	tial respon	sa SD -	stable
33	PR	80		diseas	e, PD = p	oro	gressive dis	ease, DC =	= discontin	ued prior t	to firs	st scan, irA	E = imm	une-
34	PR	95		related	adverse	ev	ent, iCPD =	immune c	onfirmed p	orogressive	e dis	ease.		
Figure 6. Dose-related Changes in Lymphocyte Infiltration in the Tumor Microenvironment The ORR in anti-PD-1/L1 naïve patients receiving 2 mg per dose is 70% when compared to patients receiving 8 mg per dose who have an ORR of 48% (ESMO 2018, LBA45). Trends in immune infiltrate changes between the 2 mg and 8 mg groups are consistent with the higher response rate in the 2 mg group.														
NK cells CD8 T cells Cytotoxic cells Th1 cells														
Pre: 46	6.2 ± 18.4	Pre: 61.4 ±	22.5 F	Pre: 35.1 ± 18.7	Pre:	46.7	′ ± 25.8	Pre: 37.1 ± 20.8	Pre: 57.	0 ± 34.5	Р	re: 20.6 ± 10.4	Pre: 3	1.5 ± 15.4

Introduction

SD-101 is a synthetic Class-C stimulates plasmacytoid dend engagement of Toll-like recep causes pDCs to release interf efficient antigen-presenting ce innate and acquired immune

Pembrolizumab is a PD-1 inh treatment of unresectable or metastatic melanoma, and recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Lymphoma Melanoma HNSCC Lymphoma Melanoma H	
	HNSCC
$\sum_{i=1}^{2} 15000 $ $i \text{ mg} 2 \text{ mg} 4 \text{ mg} 8 \text{ mg} 100000 $ $i \text{ mg} 2 \text{ mg} 4 \text{ mg} 8 \text{ mg} 1500 $ $2 \text{ and 8 mg} $ $3000 $ $p=0.0049 $ $1500 $ $p<0.0001 $ $1500 $ $p=0.0049 $ $1500 $ $p<0.0001 $ $1500 $	=0.2078

	NESUIIS	
C CpG-oligodeoxynucleotide that dritic cells (pDCs) through otor 9 (TLR9). This stimulation feron-alpha and mature into ells, thereby strengthening both responses (Figure 1).	Figure 2. SD-101 Engages its Target, TLR9, in Multiple Cancer Types Lymphoma Melanoma	Figure 3. SD-101 Induces an Ine IFN-y Gene Signature in the Tur Environment in Multiple Cance
ibitor that has been approved for	Image: Stress of the second	3000 p=0.0049 1500 p<0.0001 1500

Preclinical studies have demonstrated that intratumoral injection of SD-101 in anti–PD-1 nonresponders led to a complete, durable rejection of essentially all injected tumors and a majority of uninjected, distant-site tumors in a variety of cancer types.^{1, 2}

DV3-LYM-01 was a multicenter phase 1/2 clinical trial that evaluated intratumoral SD-101 and low-dose radiation in patients with untreated indolent lymphoma.³ SYNERGY-001 (DV3-MEL-01/Keynote-184) is a Phase 1b/2, open-label, multicenter, dose-escalation and expansion trial of intratumoral SD-101 in combination with pembrolizumab in patients with metastatic melanoma, or recurrent or metastatic head and neck squamous cell carcinoma (HNSCC).⁴

In order to gain insight into the immune mechanisms underpinning the activity of SD-101 and pembrolizumab in the clinical setting and to confirm the MOA of SD-101, biomarker assessments were included in the design of the clinical studies. A relatively mature set of data from SYNERGY-001 and comparisons across tumor types is presented.

Figure 1. Both Innate and Adaptive Immune Responses Are Increased by Intratumoral Injection of SD-101.

The response to SD-101 was assessed by the induction of
IFN-responsive genes in peripheral blood prior to dosing
(Day 1) and 24 hours after the second dose of SD-101
injection (Day 9).

0								`	_ //
0 -		I	- 0	T		- 0	1	1	- 1/2
	Pre	Post		Pre	Post		Pre	Post	- 7

IFNy activity based upon a composite score as determined by RNA expression profiling of biopsies using Nanostring. Post-dose samples were collected 1 week after the 4th weekly intratumoral injection of SD-101.

Figure 4. SD-101 Increases Lymphocyte Infiltration into Multiple Tumor Types

Figure 1. SD-101 induces plasmacytoid dendritic cells (DCs) to secrete high levels of interferon-alpha, a potent immunomodulatory cytokine that boosts natural killer cell cytotoxic activity and induces recruitment of T cells. In addition, SD-101 induces pDC maturation and the ability to cross-present tumor associated antigens, promoting CD8+ T-cell responses.

Cell type profile determined by RNA expression profiling of pre- and post-dose biopsies by Nanostring.

Methods

To assess target engagement, peripheral blood was collected prior to dosing and 24 hours after a dose of SD-101 and was analyzed by qPCR or Nanostring to evaluate a panel of interferon (IFN) responsive genes. Interferon activity was calculated using a composite of the activity for these IFN responsive genes.

Pharmacodynamic changes in the tumor environment were assessed in fine needle aspirates from DV3-LYM-01 or biopsies from SYNERGY-001. Samples were collected prior to dosing and at various times after dosing. Biopsies were analyzed with the nCounter® PanCancer Immune Profiling Panel (NanoString Technologies, Inc., Seattle WA) to evaluate the immunophenotype of the tumor environment. Nanostring data were analyzed using the nSolver[™] Analysis Software.

PD-L1 expression was conducted on biopsies collected during screening (i.e., pre-dose) and assessed using the 22C3 pharmDx assay (Agilent/Dako).

Tumor responses were assessed using RECIST v1.1.

Figure 5. Lymphocyte Infiltration Correlates with Changes in Tumor Burden

Reduction in tumor size inversely trends with infiltration of lymphocytes. P-values were determined with Spearman correlation

Post: 142.0 ± 49.2

Avg. fold change:

p < 0.000; N=23

Post: 129.4 ± 39.5

p = 0.0052; N=16

Avg. fold change: 6.40

Post: 62.2 ± 13.1

p = 0.0021; N=16

Avg. fold change: 3.53

Post: 75.1 ± 19.4

p < 0.0001; N=23

Avg. fold change: 9.54

Lymphocyte infiltration into the tumor as determined by RNA-expression profiling by Nanostring. Values above the graphs represent the means and 95% confidence intervals

Conclusions

Post: 92.3 ± 31.

p < 0.0006; N=23

Post: 104.7 ± 28.9

p = 0.0076; N=16

Avg. Fold change = 7.11 Avg. Fold change = 2.3

SD-101 engaged its target, TLR9, across multiple tumor types as demonstrated by the induction of IFNresponsive genes systemically

Post: 91.3 ± 31.7

p = 0.0214: N=10

p < 0.0001; N=23

- Increases in Th1 cells and an IFN-γ-related gene expression signature is consistent with the induction of a type I IFN response in the tumor microenvironment
- Increases in recruitment of key cell types responsible for tumor control are orchestrated by SD-101 alone in lymphoma and in combination with pembrolizumab in melanoma and head and neck tumor lesions.
- Tumor control is generally correlated with increased immune activity following SD-101 treatment
- Antitumor responses occurred in patients with negative or positive baseline PD-L1 expression
- SD-101 shows strong parallels in the pharmacodynamic responses and mechanism of action across three tumor types
- Trends in immune infiltrate changes between the 2 mg and 8 mg groups are consistent with the higher response rate in the 2 mg group

References

- Wang, S, Campos, J, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. (2016) Proc Natl Acad Sci U S A. 13(46):E7240-E7249.
- Sato-Kaneko F, Yao S, et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. (2017) JCI Insight 2(18):e93397.
- Frank, MJ, Reagan PM, et al. In situ vaccination with a TLR 9 agonist and local low dose radiation induces systemic responses in untreated indolent lymphoma (2018) Cancer Discovery 8(10):1258-1269.
- Ribas A, Medina T, et al. (2018) SD-101 in Combination with Pembrolizumab in Advanced Melanoma: Results of a Phase Ib, Multicenter Study. Cancer Discovery 8(10):1250-1257.

Disclosures

